This version: Sep. 1998 Previous version: Mar. 1996

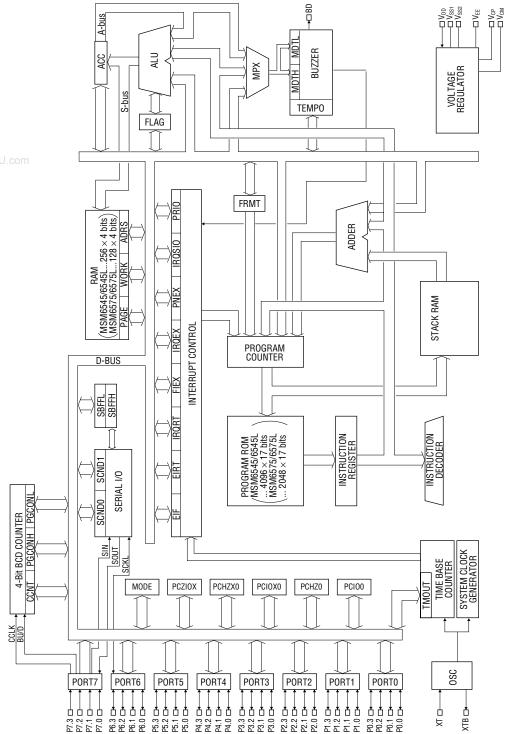
MSM6545/6575/6545L/6575L

Operatable at 0.9 V and Built-in Buzzer Circuit 4-Bit Microcontroller

OKI Semiconductor

GENERAL DESCRIPTION

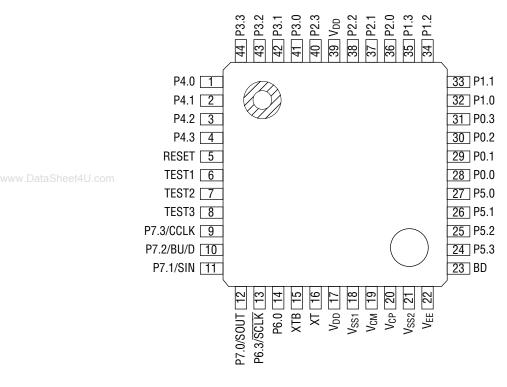
MSM6545/6575/6545L/6575L is a 4-bit, low-power microcontroller manufactured in a CMOS silicon gate process. The microcontroller can be initialized and operated at a low supply voltage of 0.9 V.


This single device contains a crystal oscillator circuit, voltage converter circuits, a time base counter, a ROM, a RAM, a stack RAM, I/O ports, interrupt function components, a serial I/O port, a buzzer output circuit, and an updown counter.

This IC is driven by one battery and is well suited to products that need to be operated under low power consumption.

FEATURES

• The IC can be initialized and operated	d even at a low voltage of 0.9 V.
• Low power consumption	
• ROM	: 4096 words \times 17 bits (MSM6545/6545L)
	2048 words \times 17 bits (MSM6575/6575L)
• RAM	: 256 words × 4 bits (MSM6545/6545L)
	128 words × 4 bits (MSM6575/6575L)
• I/O port	
Input-output port	: 7 ports \times 4 bits
Input port	: 1 port \times 4 bits
• Interrupt functions (real-time interrup	pt, external interrupt, and serial interrupt)
 Serial I/O port 	: 8-bit sync communication
 Buzzer output circuit 	
 4-bit decimal updown counter 	
• 73 instructions	
• Minimum instruction execution time	•
• Operation under single 1.5 V power s	
	ver supply to be used (MSM6545L/6575L)
• Built-in 32.768 kHz crystal oscillator o	zircuit
 Package options: 	
44-pin plastic QFP (QFP44-P-9)	10-0.80-2K) : (Product name : MSM6575/6575L-××GS-2K)
Chip	
	×× indicates a code number.


BLOCK DIAGRAM

www.DataSheet4U.com

www.DataSheet4U.com

PIN CONFIGURATION (TOP VIEW)

44-Pin Plastic QFP

- Notes: 1. P6.3, P7.0 and P7.1 also function as serial port pins. P7.2, and P7.3 also function as updown counter pins.
 - 2. P6.1 and P6.2 are not assigned pins.

PIN DESCRIPTIONS

Symbol	Туре	Description							
PORT0 (P0.0 to P0.3)	I/O	4-bit Input-output port, I/O switchable, with/without input pull-down resistor							
PORT1 (P1.1 to P1.3)	I/O	4-bit Input-output port, I/O switchable, with/w	4-bit Input-output port, I/O switchable, with/without input pull-down resistor 4-bit Input-output port, I/O switchable, External interrup						
PORT2 (P2.0 to P2.3)	I/O	4-bit Input-output port, I/O switchable, with/without input pull-down resistor							
PORT3 (P3.0 to P3.3)	I/O	4-bit Input-output port, I/O switchable, with/w	4-bit Input-output port, I/O switchable, with/without input pull-down resistor						
PORT4 (P4.0 to P4.3)	I/O	4-bit Input-output port, I/O switchable, with/w	ithout input pull·	-down resistor					
PORT5 (P5.0 to P5.3)	I/O	4-bit Input-output port, I/O switchable, with/without input pull-down resistor							
PORT6 (P6.0 to P6.3)	I/O	4-bit Input-output port, I/O switchable, with/without input pull-down resistor							
PORT7 (P7.0 to P7.3)	I	4-bit input port		Shared with serial port Shared with 4-bit up/down counter					
BD	0	Buzzer output pin							
RESET	I	Reset pin with input pull-down resistor							
TEST1 TEST2 TEST3	I	Testing pins with input pull-down resistor Tie to the negative pole of the battery.							
XT	I	Connection nine for or stal and illater							
ХТВ	0	Connection pins for crystal oscillator							
V _{DD}		0 V power supply pin							
V _{SS1}		-1.5 V supply pin (power supply pin for -1.5 V	/ operation)						
V _{SS2}		-3.0 V supply pin (power supply pin for -3.0 V	/ operation)						
V _{CP} V _{CM}		Connection pins for internal potential development capacitor							
V _{EE}	-	Supply pin for internal logic (constant voltage circuit output pin)							

ABSOLUTE MAXIMUM RATINGS (MSM6545/6575, 1.5 V, BUF = "0")

 $V_{DD} = 0 V (V_{SS1} = battery voltage)$

Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage	V _{SS1}		-6.0 to +0.3	
Input Voltage	V _{IN}	Ta = 25°C	V _{SS1} – 0.3 to +0.3	V
Output Voltage	V _{OUT}		V _{SS1} – 0.3 to +0.3	
Storage Temperature	T _{STG}	—	-55 to +125	°C

Note: The input of the constant voltage circuit is equal to the output of the voltage converter (V_{SS2}) .

RECOMMENDED OPERATING CONDITIONS (MSM6545/6575, 1.5 V, BUF = "0")

 $V_{DD} = 0 V (V_{SS1} = battery voltage)$

Parameter	Symbol	Condition	Range	Unit
Operating Voltage	V _{op}	—	-1.75 to -0.9	V
Operating Temperature	T _{op}	—	-20 to +70	°C
Oscillation Frequency	fosc	—	32.768	kHz

Note: The input of the constant voltage circuit is equal to the output of the voltage converter (V_{SS2}) .

ELECTRICAL CHARACTERISTICS (MSM6545/6575, 1.5 V, BUF = "0")

$V_{DD} = 0 \text{ V}, V_{SS1} = -1.5 \text{ V}$ (battery voltage), $V_{SS2} = -3.0 \text{ V}, f_{OSC} = 32.768 \text{ kHz}, C_X = 35 \text{ pF}, \text{ Ta} = 25^{\circ}\text{C}$							
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Applied Pin
Power Supply Current	I _{DD}	*1	—	3	—	μA	—
Oscillation Start Voltage	-V _{OSC}	Within 2 seconds	—		0.9	V	V _{SS1}
Output Current 1	-I _{OH1}	$V_0 = -0.5 V$	150		—		PORTO to PORT6*2
Output Current 1	I _{OL1}	$V_0 = -1.0 V$	150			μA	SOUT, SCLK
Output Current 9	-I _{OH2}	V ₀ = -0.5 V	20	_	—		BD
Output Current 2	I _{OL2}	$V_0 = -1.0 V$	20	_	—	μA	
Input Ourrent 1	I _{IH1}	$V_{I} = 0 V$, in the input state,	7	15	30	μA	PORT0 to
Input Current 1		with pull-down resistor	1				PORT6 *2
Input Lookago Current		$V_{I} = 0 V, -1.5 V$, in the input state,		_	1		PORT0 to PORT7*2
Input Leakage Current		without pull-down resistor				μA	SIN, SOUT, SCLK
Input Current 2	I	$V_I = 0 V$, with pull-down	70	250	500	μA	RESET
Input Current 3	I _{IH3}	resistor	70	250	500		TEST1 to TEST3
lanut Valtana	–V _{IH}		_		0.3	v	All input pipe
Input Voltage	-V _{IL}		1.2	_	—		All input pins

 $V_{22} = 0.1/V_{222} = -1.5 V (bottony voltage) V_{222} = -2.0 V f_{222} = -22.769 kHz C_{22} = 25 pE T_2 = 25^{\circ}C$

*1 Depends on the program. (Values in the above table are applied in the case where the software duty is about 5%.)

*2 PORT0 = P0.0 to P0.3, PORT1 = P1.0 to P1.3, PORT2 = P2.0 to P2.3, PORT3 = P3.0 to P3.3, PORT4 = P4.0 to P4.3, PORT5 = P5.0 to P5.3, PORT6 = P6.0 to P6.3, PORT7 = P7.0 to P7.3

Note: The input of the constant voltage circuit is equal to the output of the voltage converter (V_{SS2}) .

ABSOLUTE MAXIMUM RATINGS (MSM6545/6575, 1.5 V, BUF = "1")

V_{DD} = 0 V (V_{SS1} = battery voltage)

Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage	V _{SS1}		-6.0 to +0.3	
Input Voltage	VIN	Ta = 25°C	V _{SS1} – 0.3 to +0.3	V
Output Voltage	V _{OUT}		V _{SS1} – 0.3 to +0.3	1
Storage Temperature	T _{STG}	—	-55 to +125	°C

Note: The input of the constant voltage circuit is directly connected to the power supply (V_{SS1}).

www.DataShe RECOMMENDED OPERATING CONDITIONS (MSM6545/6575, 1.5 V, BUF = "1") Vnp = 0 V (Vsst = battery voltage)

			•DD = 0 • (•551 = batter	y vonugo)
Parameter	Symbol	Condition	Range	Unit
Operating Voltage	V _{op}	—	-1.75 to -0.9	V
Operating Temperature	T _{op}	—	-20 to +70	°C
Oscillation Frequency	fosc	—	32.768	kHz

Note: The input of the constant voltage circuit is directly connected to the power supply (V_{SS1}).

ELECTRICAL CHARACTERISTICS (MSM6545/6575, 1.5 V, BUF = "1")

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Applied Pin
Power Supply Current	I _{DD}	*1	—	1.5	_	μA	_
Oscillation Start Voltage	-V _{OSC}	Within 2 seconds	—	_	0.9	V	V _{SS1}
Output Current 1	-I _{OH1}	$V_0 = -0.5 V$	150 — —		PORTO to PORT6*2		
	I _{OL1}	$V_0 = -1.0 V$	150			μA	SOUT, SCLK
Output Current 9	–I _{0Н2}	$V_0 = -0.5 V$	20				BD
Output Current 2	I _{OL2}	$V_0 = -1.0 V$	20		—	μA	
land Original d	I _{IH1}	$V_I = 0 V$, in the input state,	7	15	30	μA	PORT0 to
Input Current 1		with pull-down resistor					PORT6 *2
Input Lookago Current		$V_I = 0 V, -1.5 V$, in the input state,			1		PORTO to PORT7*2
Input Leakage Current	[without pull-down resistor	_		I	μA	SIN, SOUT, SCLK
Input Current 2	luur	$V_I = 0 V$, without pull-down	70	250	500		RESET
Input Current 3	I _{IH3}	resistor	70	200	500	μA	TEST1 to TEST3
lanut Maltana	–V _{IH}		_	_	0.3	v	All input pipe
Input Voltage	-V _{IL}					V	All input pins

 V_{DD} = 0 V, V_{SS1} = -1.5 V (battery voltage), V_{SS2} = -3.0 V, f_{OSC} = 32.768 kHz, C_X = 35 pF, Ta = 25°C

*1 Depends on the program. (Values in the above table are applied in the case where the software duty is about 5%.)

*2 PORT0 = P0.0 to P0.3, PORT1 = P1.0 to P1.3, PORT2 = P2.0 to P2.3, PORT3 = P3.0 to P3.3, PORT4 = P4.0 to P4.3, PORT5 = P5.0 to P5.3, PORT6 = P6.0 to P6.3, PORT7 = P7.0 to P7.3

Note: The input of the constant voltage circuit is directly connected to the power supply (V_{SS1}).

ABSOLUTE MAXIMUM RATINGS (MSM6545L/6575L, 3.0 V, BUF = "0")

V_{DD} = 0 V (V_{SS2} = battery voltage)

Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage	V _{SS2}		-6.0 to +0.3	
Input Voltage	V _{IN}	Ta = 25°C	V _{SS2} – 0.3 to +0.3	V
Output Voltage	V _{OUT}		V _{SS2} – 0.3 to +0.3	
Storage Temperature	T _{STG}	—	-55 to +125	°C

Note: The input of the constant voltage circuit is equal to the output of the voltage converter (V_{SS1}) .

RECOMMENDED OPERATING CONDITIONS (MSM6545L/6575L, 3.0 V, BUF = "0")

 $V_{DD} = 0 V (V_{SS2} = battery voltage)$

Parameter	Symbol	Condition	Range	Unit
Operating Voltage	V _{op}		-3.5 to -1.8	V
Operating Temperature	T _{op}	—	-20 to +70	°C
Oscillation Frequency	f _{OSC}	—	32.768	kHz

Note: The input of the constant voltage circuit is equal to the output of the voltage converter (V_{SS1}).

ELECTRICAL CHARACTERISTICS (MSM6545L/6575L, 3.0 V, BUF = "0")

$V_{DD} = 0 \text{ V}, \text{ V}_{SS1} = -1.5 \text{ V}, \text{ V}_{SS2} = -3.0 \text{ V} \text{ (battery voltage)}, \text{ f}_{OSC} = 32.768 \text{ kHz}, \text{ C}_{X} = 35 \text{ pF}, \text{ Ta} = 28 \text{ V}_{OSC} = -3.0 \text{ V} \text{ (battery voltage)}, \text{ f}_{OSC} = -$
--

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Applied Pin
Power Supply Current	I _{DD}	*1	_	0.75	—	μA	_
Oscillation Start Voltage	-V _{OSC}	Within 2 seconds	—	—	1.8	V	V _{SS2}
Output Current 1	-I _{OH1}	$V_0 = -0.5 V$	500	—	—		PORTO to PORT6*2
	I _{OL1}	V ₀ = -2.5 V	500	_	—	μA	SOUT, SCLK
Output Current 2	-I _{0H2}	$V_0 = -0.5 V$	20	—	—		BD
Output Current 2	I _{OL2}	V ₀ = -2.5 V	20	20 — —	—	μA	עס
Input Current 1	I _{IH1}	$V_I = 0 V$, in the input state,	50	100	200	μA	PORT0 to
Input Current 1		with pull-down resistor	50				PORT6 *2
Input Lookago Current	111	$V_1 = 0 V, -3 V$, in the input state,			1		PORTO to PORT7*2
Input Leakage Current		without pull-down resistor	_			μA	SIN, SOUT, SCLK
Input Current 2	luur	$V_I = 0 V$, with pull-down	200	750	1500		RESET
Input Current 3	I _{IH3}	resistor	200	750	1500	μA	TEST1 to TEST3
land Maltana	–V _{IH}			_	0.5	v	All input pipe
Input Voltage	–V _{IL}	_			—	V	All input pins

*1 Depends on the program. (Values in the above table are applied in the case where the software duty is about 5%.)

*2 PORT0 = P0.0 to P0.3, PORT1 = P1.0 to P1.3, PORT2 = P2.0 to P2.3, PORT3 = P3.0 to P3.3, PORT4 = P4.0 to P4.3, PORT5 = P5.0 to P5.3, PORT6 = P6.0 to P6.3, PORT7 = P7.0 to P7.3

Note: The input of the constant voltage circuit is equal to the output of the voltage converter (V_{SS1}).

ABSOLUTE MAXIMUM RATINGS (MSM6545L/6575L, 3.0 V, BUF = "1")

V_{DD} = 0 V (V_{SS2} = battery voltage)

Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage	V _{SS2}		-6.0 to +0.3	
Input Voltage	V _{IN}	Ta = 25°C	V _{SS2} – 0.3 to +0.3	V
Output Voltage	V _{OUT}		V _{SS2} – 0.3 to +0.3	
Storage Temperature	T _{STG}	_	-55 to +125	°C

Note: The input of the constant voltage circuit is directly connected to the power supply (V_{SS2}).

BECOMMENDED OPERATING CONDITIONS (MSM6545L/6575L, 3.0 V, BUF = "1")

V_{DD} = 0 V (V_{SS2} = battery voltage)

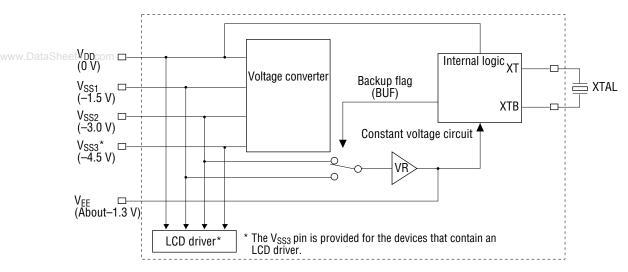
Parameter	Symbol	Condition	Range	Unit
Operating Voltage	Vop	—	-3.5 to -0.9	V
Operating Temperature	T _{op}	—	-20 to +70	°C
Oscillation Frequency	f _{OSC}	—	32.768	kHz

Note: The input of the constant voltage circuit is directly connected to the power supply (V_{SS2}).

ELECTRICAL CHARACTERISTICS (MSM6545L/6575L, 3.0 V, BUF = "1")

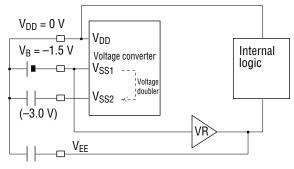
-DD		2 0.0 1 (Suiter) 1011age/, 1	000			×	p:, ::: =: :
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Applied Pin
Power Supply Current	I _{DD}	*1	—	1.5	-	μA	_
Oscillation Start Voltage	-V _{OSC}	Within 2 seconds	—	_	0.9	V	V _{SS2}
Output Ourront 1	-I _{OH1}	V ₀ = -0.5 V	500			PORTO to PORT6*2	
Output Current 1	I _{OL1}	V ₀ = -2.5 V	500	—	—	μA	SOUT, SCLK
Output Ourront O	-I _{0H2}	V ₀ = -0.5 V	20	_	—		חח
Output Current 2	I _{OL2}	V ₀ = -2.5 V	20	_	—	μA	BD
Innut Ourrant 1		$V_I = 0 V$, in the input state,	50 100	000		PORT0 to	
Input Current 1	I _{IH1}	with pull-down resistor	50	100	200	μA	PORT6 *2
Innut Lookaga Querant	1 _	$V_1 = 0 V, -3 V$, in the input state,		_	1	μA	PORTO to PORT7*2
Input Leakage Current		without pull-down resistor					SIN, SOUT, SCLK
Innut Ourrant O	I _{IH3}	$V_I = 0 V$, with pull-down	200	750	1500	μA	RESET
Input Current 3		resistor					TEST1 to TEST3
Input Voltage	–V _{IH}		—	_	0.5	v	All input nine
Input Voltage	-V _{IL}				_	- V	All input pins

*1 Depends on the program. (Values in the above table are applied in the case where the software duty is about 5%.)

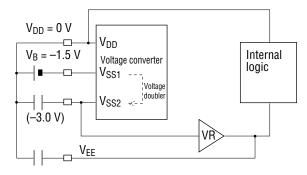

*2 PORT0 = P0.0 to P0.3, PORT1 = P1.0 to P1.3, PORT2 = P2.0 to P2.3, PORT3 = P3.0 to P3.3, PORT4 = P4.0 to P4.3, PORT5 = P5.0 to P5.3, PORT6 = P6.0 to P6.3, PORT7 = P7.0 to P7.3

Note: The input of the constant voltage circuit is directly connected to the power supply (V_{SS2}).

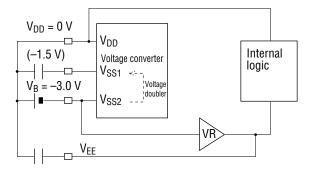
NOTES ON USE


Power Supply for 0.9 V Microcontroller Series (Backup Flag and Constant-Voltage Circuit)

The 0.9 V devices have a built-in constant-voltage circuit. The output of this constant-voltage circuit powers the microcontroller's internal logic circuits. Setting a backup flag (BUF) allows the input of the constant voltage circuit to be switched to either the battery or the output generated in the voltage converter, based on the battery voltage. A battery voltage of 1.5 V or 3.0 V can be selected.


The output (V_{EE}) of the constant-voltage circuit is set at approximately –1.3 V. This allows the current consumed by the internal logic to be limited, irrespective of the battery voltage. However, if the input of the constant voltage circuit is below this set value (approximately – 1.3V), the output (V_{EE}) is equal to the input. The 0.9 V microcontroller can be operated even if the internal voltage (output from the constant voltage circuit) falls to 0.9 V. Setting the backup flag allows a larger operating voltage margin despite changes in internal voltage due to noise. For example, for the 1.5 V specification, setting the backup flag at "0" supplies twice the battery voltage to the constant voltage circuit. Thus, even if the battery voltage falls to 0.9 V, the output voltage (V_{EE}) is maintained at –1.3 V, providing a larger margin of operating voltage of the internal logic circuits, because 1.8 V is applied to the input of the constant-voltage circuit. Figures 1 to 4 show the internal status depending on the backup flag settings for the battery, as well as status features.

(Figure 1) 1.5 V Operation (Backup Flag = 1)



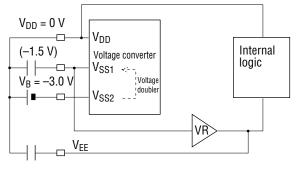
www.DataSheet4U.com

(Figure 2) 1.5 V Operation (Backup Flag = 0)

(Figure 3) 3.0 V Operation (Backup Flag = 1)

Internal status	The battery level V _{SS1} is applied to the input of the constant voltage circuit.
Operating range	–0.9 to –1.75 V
Current consumption	1.5 μΑ*
Feature	When the battery level is powered down, the internal circuit is powered directly by the battery.

* When the software duty is about 5%

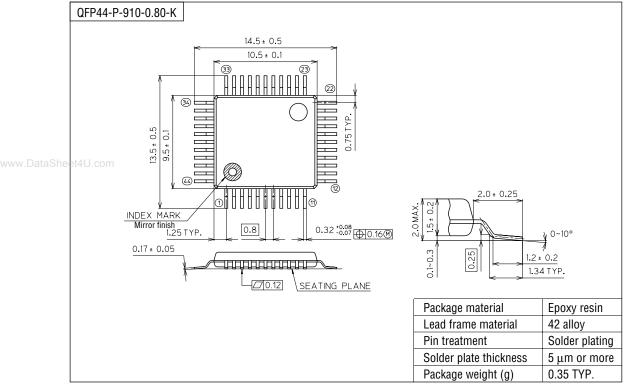

Internal status	A doubled level of V_{SS2} is applied to the input of the constant voltage circuit.	
Operating range	–0.9 to –1.75 V	
Current consumption	3 μΑ*	
Feature	When the battery level is powered down, a larger operating voltage margin is gained, compared to the case of Figure 1.	

* When the software duty is about 5%

Internal status	The battery level V_{SS2} is applied to the input of the constant voltage circuit.	
Operating range	–0.9 to –3.5 V	
Current consumption	1.5 µA*	
Feature	When the battery level is powered down, the internal circuit is powered directly by the battery.	

 * When the software duty is about 5%

(Figure 4) 3.0 V Operation (Backup Flag = 0)

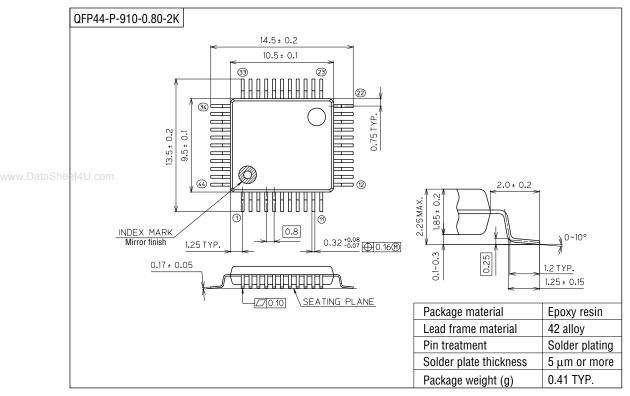

www.DataSheet4U.com

Internal status	A doubled level of V _{SS1} is applied to the input of the constant voltage circuit.	
Operating range	–1.8 to –3.5 V	
Current consumption	0.75 μΑ*	
Feature	When the battery level is powered down, a smaller operating voltage margin is gained, compared to the case of Figure 3.	

* When the software duty is about 5%

PACKAGE DIMENSIONS

(Unit : mm)



Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage.

Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

(Unit : mm)

Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage.

Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).